已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求使f(x)≥2的x的取值范围.-高三数学

题目简介

已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)求使f(x)≥2的x的取值范围.-高三数学

题目详情

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x

(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)求使f(x)≥2的x的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵sin(2x+class="stub"π
6
)
=sin2xcosclass="stub"π
6
+cos2xsinclass="stub"π
6

sin(2x-class="stub"π
6
)
=sin2xcosclass="stub"π
6
-cos2xsinclass="stub"π
6
,cos2x=class="stub"1
2
(cos2x+1)

f(x)=sin(2x+class="stub"π
6
)+sin(2x-class="stub"π
6
)+2cos2x

=sin2xcosclass="stub"π
6
+cos2xsinclass="stub"π
6
+sin2xcosclass="stub"π
6
-cos2xsinclass="stub"π
6
+cos2x+1

=
3
sin2x+cos2x+1
=2sin(2x+class="stub"π
6
)+1

可得f(x)的最小正周期T=class="stub"2π
|ω|
=class="stub"2π
2

-class="stub"π
2
+2kπ≤2x+class="stub"π
6
≤class="stub"π
2
+2kπ
(k∈Z),解之得-class="stub"π
3
+kπ≤x≤class="stub"π
6
+kπ
(k∈Z),
∴函数f(x)的递增区间是[-class="stub"π
3
+kπ,class="stub"π
6
+kπ]
,k∈Z.
(Ⅱ)由f(x)≥2,得2sin(2x+class="stub"π
6
)+1≥2
(k∈Z),即sin(2x+class="stub"π
6
)≥class="stub"1
2

根据正弦函数的图象,可得class="stub"π
6
+2kπ≤2x+class="stub"π
6
class="stub"5π
6
+2kπ(k∈Z),
解之得kπ≤x≤kπ+class="stub"π
3
(k∈Z),
∴使不等式f(x)≥2成立的x取值范围是{x|kπ≤x≤kπ+class="stub"π
3
,k∈Z}

更多内容推荐