已知函数f(x)=1+x-x22+x33-x44+…+x20132013,g(x)=1-x+x22-x33+x44-…-x20132013,设函数F(x)=f(x+3)•g(x-4),且函数F(x)的

题目简介

已知函数f(x)=1+x-x22+x33-x44+…+x20132013,g(x)=1-x+x22-x33+x44-…-x20132013,设函数F(x)=f(x+3)•g(x-4),且函数F(x)的

题目详情

已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013
,设函数F(x)=f(x+3)•g(x-4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z内,则b-a的最小值为(  )
A.8B.9C.10D.11
题型:单选题难度:偏易来源:天津模拟

答案

∵f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013

∴f′(x)=(1-x)+(x2-x3)+…+x2012
=(1-x)(1+x2+x4+…+x2010)+x2012
当x=-1时,f′(x)=2×1006+1=2013>0,
当x≠-1时,f′(x)=(1-x)(1+x2+x4+…+x2010)+x2012
=(1-x)•
1-(x2)1006
1-x2
+x2012
=
1+x2013
1+x
>0,
∴f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
在R上单调递增;
又f(0)=1,
f(-1)=-class="stub"1
2
-class="stub"1
3
-class="stub"1
4
-…-class="stub"1
2013
<0,
∴f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
在(-1,0)上有唯一零点,
由-1<x+3<0得:-4<x<-3,
∴f(x+3)在(-4,-3)上有唯一零点.
∵g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013

∴g′(x)=(-1+x)+(-x2+x3)+…-x2012
=-[(1-x)+(x2-x3)+…+x2012]
=-f′(x)<0,
∴g(x)在R上单调递减;
又g(1)=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
4
-class="stub"1
5
)+…+(class="stub"1
2012
-class="stub"1
2013
)>0,
g(2)=-1+(
22
2
-
23
3
)+(
24
4
-
25
5
)+…+(
22012
2012
-
22013
2013
),
∵n≥2时,
2n
n
-
2n+1
n+1
=
2n(1-n)
n(n+1)
<0,
∴g(2)<0.
∴g(x)在(1,2)上有唯一零点,
由1<x-4<2得:5<x<6,
∴g(x-4)在(5,6)上有唯一零点.
∵函数F(x)=f(x+3)•g(x-4),
∴F(x)的零点即为f(x+3)和g(x-4)的零点.
∴F(x)的零点区间为(-4,-3)∪(5,6).
又b,a∈Z,
∴(b-a)min=6-(-4)=10.
故选C.

更多内容推荐