如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。小题1:求的度数;小题2:若阴影部分的面积为,求⊙O的半径r-九年级数学

题目简介

如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。小题1:求的度数;小题2:若阴影部分的面积为,求⊙O的半径r-九年级数学

题目详情

如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。
小题1:求的度数;
小题2:若阴影部分的面积为,求⊙O的半径r
题型:解答题难度:中档来源:不详

答案


小题1:
小题2:⊙O的半径r为1.

(1)连接OC,由AB与圆O相切,得到OC垂直于AB,再由OA=OB,得到OC为角平分线,再由D、E分别为OA、OB的中点,得到OD=AD=OE=EB,即OC为OA的一半,OC为OB的一半,可得出∠A=∠B=30°,即可求出∠AOB=120°;
(2)设OC=r,可得出OA=2r,利用勾股定理表示出AC,进而确定出AB的长,由三角形OAB的面积-扇形DOE的面积表示出阴影部分面积,分别利用三角形及扇形的面积公式,以及已知阴影部分的面积列出关于r的方程,求出方程的解即可得到圆O的半径r。

更多内容推荐