如图,四边形ABCD中,AB⊥BC,CD⊥BC,E为BC上一点,且AB=CE,CD=BE.(1)求证:∠AED=90°;(2)若EN平分∠AED交AD于N,试判断△BCN的形状,并证明;(3)在(2)

题目简介

如图,四边形ABCD中,AB⊥BC,CD⊥BC,E为BC上一点,且AB=CE,CD=BE.(1)求证:∠AED=90°;(2)若EN平分∠AED交AD于N,试判断△BCN的形状,并证明;(3)在(2)

题目详情

如图,四边形ABCD中,AB⊥BC,CD⊥BC,E为BC上一点,且AB=CE,CD=BE.
(1)求证:∠AED=90°;
(2)若EN平分∠AED交AD于N,试判断△BCN的形状,并证明;
(3)在(2)问的条件下,猜想:△BNC与四边形ABCD的面积有何数量关系?并说明理由.
题型:解答题难度:偏难来源:四川省期末题

答案

(1)证明:∵AB⊥BC,CD⊥BC,
∴∠ABE=∠ECD=90°,
∵在△ABE和△ECD中,
∴△ABE≌△ECD(SAS),
∴∠AEB=∠EDC,
∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°;
(2)解:△BCN为等腰直角三角形.
证明:∵△ABE≌△ECD,
∴AE=DE,∠BAE=∠DEC,
∵∠AED=90°,
∴△AED为等腰直角三角形,
∵EN平分∠AED,
∴∠NED=∠NAE=45°,EN⊥AD,
∴∠BAN=∠CEN,AN=EN,
∵在△BAN和△CEN中,
∴△BAN≌△CEN(SAS),
∴NB=NC,∠ANB=∠ENC,
∵∠ANB+∠BNE=90°,
∴∠ENC+∠BME=90°,
∴△BNC为等腰直角三角形;
(3)解:2S△BNC=S梯形ABCD.
理由如下:作NM⊥BC,
∵△AED为等腰直角三角形,EN平分∠AED,
∴N点为AD的中点,
∵AB⊥BC,CD⊥BC,NM⊥BC,
∴AB∥CD∥MN,
∴M点为BC的中点,
∴MN为梯形ABCD的中位线,NE⊥BC,
∴S△BNC=BC·NE·,S梯形ABCD=BC·NE,
∴2S△BNC=S梯形ABCD.

更多内容推荐