已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2

题目简介

已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2

题目详情

已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.
                                          
                                         图①                                                 图②
题型:解答题难度:中档来源:辽宁省中考真题

答案

解:(1)过点P作PQ⊥AB于点Q,
∵PA=PB,∠APB=120°,AB=4
∴AQ=AB=×4=2
∠APQ=∠APB=×120°=60°,
在Rt△APQ中,sin∠APQ=
∴AP==sin60°=4;
(2)过点P分别作PS⊥OM于点S,PT⊥ON于点T,
∴∠OSP=∠OTP=90°,
在四边形OSPT中,
∠SPT=360°﹣∠OSP﹣∠SOT﹣∠OTP
=360°﹣90°﹣60°﹣90°
=120°,
∴∠APB=∠SPT=120°,
∴∠APS=∠BPT,
又∵∠ASP=∠BTP=90°,AP=BP,
∴△APS≌△BPT,
∴PS=PT,
∴点P在∠MON的平分线上;
(3)①8+4;②4+4<t≤8+4

更多内容推荐