函数f(x)的定义域D={x|x≠0},且满足对任意x1,x2∈D有f(x1•x2)=f(x1)+f(x2)(1)求f(1),f(-1)的值.(2)判断f(x)的奇偶性并证明.(3)如果f(4)=1,

题目简介

函数f(x)的定义域D={x|x≠0},且满足对任意x1,x2∈D有f(x1•x2)=f(x1)+f(x2)(1)求f(1),f(-1)的值.(2)判断f(x)的奇偶性并证明.(3)如果f(4)=1,

题目详情

函数f(x)的定义域D={x|x≠0},且满足对任意x1,x2∈D有f(x1•x2)=f(x1)+f(x2
(1)求f(1),f(-1)的值.
(2)判断f(x)的奇偶性并证明.
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵对任意x1,x2∈D有f(x1•x2)=f(x1)+f(x2)
令x1=x2=1,则f(1•1)=f(1)+f(1)
解得f(1)=0
令x1=x2=-1,则f(-1•-1)=f(-1)+f(-1)
解得f(-1)=0
(2)f(x)为偶函数,证明如下:
令x1=-1,x2=x,
则f(-x)=f(-1)+f(x),
即f(-x)=f(x),
即f(x)为偶函数
(3)∵f(4)=1,
∴f(64)=3f(4)=3,
由f(3x+1)+f(2x-6)≤3得
f(3x+1)+f(2x-6)≤f(64)
∵f(x)为偶函数双,又因为f(x)在(0,+∞)上是增函数,
∴|(3x+1)•(2x-6)|≤64,且3x+1≠0,2x-6≠0,
解各-class="stub"7
3
≤x≤5且x≠-class="stub"1
3
,x≠3
∴x的取值范围为{x|-class="stub"7
3
≤x≤5且x≠-class="stub"1
3
,x≠3}

更多内容推荐