图1是边长分别为43和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交

题目简介

图1是边长分别为43和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交

题目详情

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)BE=AD.
∵△ABC,△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠ECD=60°
∵∠BCE=30°,
∴∠ACE=30°,
∴∠ACD=30°
∴△ADC≌△BEC(SAS),
∴BE=AD.

(2)设PR、RQ分别交AC于G、H,QC=x,
∵由(1)可知∠ACF=30°,∠PQR=60°,
∴∠CHQ=30°,
∴QH=QC,∠RHG=∠CHQ=30°,
∴∠RGH=90°,RH=3-QH=3-QC=3-x,
∴RG=class="stub"1
2
(3-x),GH=
3
2
(3-x),
所以SRt△GHR=class="stub"1
2
RG•GH=
3
8
(3-x)2,
而∵△C′D′E′的边长为3,得出S△PQR=class="stub"9
4
3

∴重叠部分面积y=class="stub"9
4
3
-
3
8
(3-x)2,
即:y=-
3
8
x2
+class="stub"3
4
3
x+class="stub"9
8
3
(0≤x≤3).

更多内容推荐