如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.(1)求证:△AOM≌△BON;(2)当四边形MONB的面积为1时,求正方形的边长;(3)在(2)的

题目简介

如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.(1)求证:△AOM≌△BON;(2)当四边形MONB的面积为1时,求正方形的边长;(3)在(2)的

题目详情

如图1,正方形ABCD和过其对角线交点O的正方形OEFG的边长相等,OE交AB于M,OG交BC于N.
(1)求证:△AOM≌△BON;
(2)当四边形MONB的面积为1时,求正方形的边长;
(3)在(2)的条件下,如果正方形OEFG绕点O逆时针转动,使顶点E刚好落在CB的延长线上如图2,并过O作OH⊥BC垂足为H,求MB的长.
题型:解答题难度:中档来源:不详

答案

(1)证明:∵∠AOM+∠BOM=90°,∠BON+∠BOM=90°,
∴∠AOM=∠BON,
∵四边形ABCD和四边形OEFG都是正方形,
∴AO=BO,∠OAM=∠OBN=45°,
在△AOM和△BON中,
∠AOM=∠BON
AO=BO
∠OAM=∠OBN

∴△AOM≌△BON(ASA);

(2)∵△AOM≌△BON,
∴△AOM的面积=△BON的面积,
∴四边形MONB的面积=class="stub"1
4
正方形ABCD的面积,
∵四边形MONB的面积为1,
∴正方形ABCD的面积=4,
∴正方形ABCD的边长为2;

(3)∵OH⊥BC,
∴OH=class="stub"1
2
×2=1,
又∵OE=2,
∴∠OEH=30°,
∴BH=OH=1,EH=
22-12
=
3

∴EB=EH-BH=
3
-1,
在Rt△EBM中,MB=EB•tan30°=(
3
-1)×
3
3
=1-
3
3

更多内容推荐