如图,在正方形ABCD中,点E、F分别为DC、BC边上的点,且∠EAF=45°,若将△ADE绕点A顺时针方向旋转90°得到△ABG.回答下列问题:(1)∠GAF等于多少度?为什么?(2)EF与FG相等

题目简介

如图,在正方形ABCD中,点E、F分别为DC、BC边上的点,且∠EAF=45°,若将△ADE绕点A顺时针方向旋转90°得到△ABG.回答下列问题:(1)∠GAF等于多少度?为什么?(2)EF与FG相等

题目详情

如图,在正方形ABCD中,点E、F分别为DC、BC边上的点,且∠EAF=45°,若将△ADE绕点A顺时针方向旋转90°得到△ABG.回答下列问题:
(1)∠GAF等于多少度?为什么?
(2)EF与FG相等吗?为什么?
(3)△AEF与△AGF有何种位置关系?
题型:解答题难度:中档来源:山东省期末题

答案

解:(1)∠GAF=45°
∵△ABG是将△ADE绕A点顺时针旋转90°得到的,
∴∠DAE=∠BAG,
∵∠EAF=45°,∠BAD=90°,
∴∠DAE+∠FAB=90°﹣45°=45°,
∴∠BAG+∠FAB=45°,
即∠GAF=45°;
(2)EF=FG,理由:
∵△ABG是△ADE旋转90°得到的,
∴AE=AG,
∵∠EAF=45°,∠GAF=45°,
∴∠EAF=∠GAF,在△AEF和△AGF中,
∴△AEF≌△AGF,
∴EF=FG;
(3)△AEF与△AGF关于直线AF轴对称,
由△AEF≌△AGF易证。

更多内容推荐