{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)(1)求证:当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为x1,x2,…,xn

题目简介

{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)(1)求证:当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为x1,x2,…,xn

题目详情

{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)
(1)求证:当k取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为x1,x2,…,xn,…,
求证:数列为等差数列.
题型:解答题难度:中档来源:不详

答案

证明同解析
(1)∵{an}是等差数列,∴2ak+1=ak+ak+2,
故方程akx2+2ak+1x+ak+2=0可变为(akx+ak+2)(x+1)=0,
∴当k取不同自然数时,原方程有一个公共根-1 
(2)原方程不同的根为xk=


更多内容推荐