设函数,其中常数a>1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.-高三数学

题目简介

设函数,其中常数a>1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.-高三数学

题目详情

设函数,其中常数a>1
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.
题型:解答题难度:偏易来源:不详

答案

(I)当时,在区间是增函数,在区间是减函数.(II)的取值范围是(1,6)
(1)利用导数大(小)于零,来求其单调性.
(2)当x≥0时,利用导数求f(x)的最小值,根据最小值大于零,求出a的取值范围.求导本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围.

更多内容推荐