已知向量a=(cos3x2,sin3x2),b=(cosx2,-sinx2),x∈[-π3,π2](1)求证:(a-b)⊥(a+b);(2)|a+b|=13,求cosx的值.-数学

题目简介

已知向量a=(cos3x2,sin3x2),b=(cosx2,-sinx2),x∈[-π3,π2](1)求证:(a-b)⊥(a+b);(2)|a+b|=13,求cosx的值.-数学

题目详情

已知向量
a
=(cos
3x
2
,sin
3x
2
)
b
=(cos
x
2
,-sin
x
2
)
x∈[-
π
3
π
2
]

(1)求证:(
a
-
b
)
(
a
+
b
)

(2)|
a
+
b
|=
1
3
,求cosx的值.
题型:解答题难度:中档来源:不详

答案

(1)∵
a
=(cosclass="stub"3x
2
,sinclass="stub"3x
2
)
b
=(cosclass="stub"x
2
,-sinclass="stub"x
2
)

a
2
=cos2class="stub"3x
2
+sin2class="stub"3x
2
=1
b
2
=cos2class="stub"x
2
+sin2class="stub"x
2
=1

(
a
-
b
)•(
a
+
b
)=
a
2
-
b
2
=0

(
a
-
b
)
(
a
+
b
)


(2)∵|
a
+
b
|=
(
a
+
b
)
2
=
a
2
+2
a
b
+
b
2

=
1+2(cosclass="stub"3x
2
•cosclass="stub"x
2
+sinclass="stub"3x
2
•sinclass="stub"x
2
)+1

=
2+2cos2x

=class="stub"1
3

∴2+2cos2x=class="stub"1
9
,即cos2x=-class="stub"17
18

2cos2x-1=-class="stub"17
18

cos2x=class="stub"1
36

x∈[-class="stub"π
3
,class="stub"π
2
]

cosx=class="stub"1
6

更多内容推荐