如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=5.则正方形ABCD的面积为______.-数学

题目简介

如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=5.则正方形ABCD的面积为______.-数学

题目详情

如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若AE=AP=1,PB=
5
.则正方形ABCD的面积为______.
题型:填空题难度:偏易来源:不详

答案

∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AE⊥AP,AE=AP=1,
∴∠AEP=∠APE=45°,∠EAF=∠BAD=90°,
∵∠BAP=∠BAP,
∴∠EAB=∠PAD,
∵在△EAB和△PAD中
AB=AD
∠EAB=∠PAD
AE=AP

∴△EAB≌△PAD(SAS),
∴∠EBA=∠ADP,BE=DP,∠APD=∠AEB=180°-45°=135°,
∴∠PEB=135°-45°=90°,
即△BEP是直角三角形,
∵AE=AP=1,
∴由勾股定理得:EP=
12+12
=
2
BE=DP=
BP2-EP2
=
3

过B作BF⊥AE交AE的延长线于F,连接BD,
则∠FEB=180°-135°=45°,
∴∠EBF=45°=∠FEB,
∴EF=BF,
∵BE=
3

∴由勾股定理得:BF=EF=
6
2

∴S△APB+S△APD=S△APB+S△AEB=S四边形AEBP=S△AEP+S△PEB=class="stub"1
2
×1×1+class="stub"1
2
×
2
×
3
=class="stub"1
2
+class="stub"1
2
6

∵S△DPB=class="stub"1
2
×DP×BE=class="stub"1
2
×
3
×
3
=class="stub"3
2

∴S正方形ABCD=2S△ABD=2(S△BPD+S△APD+S△APB)=2×(class="stub"1
2
+class="stub"1
2
6
+class="stub"3
2
)=4+
6

故答案为:4+
6

更多内容推荐