已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)若PA:PB=1:2,∠APB=13

题目简介

已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.(1)求证:△CPB≌△AEB;(2)求证:PB⊥BE;(3)若PA:PB=1:2,∠APB=13

题目详情

已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.
题型:解答题难度:中档来源:不详

答案

(1)证明:∵四边形ABCD是正方形,
∴BC=AB,(1分)
∵∠CBP=∠ABE,BP=BE,
∴△CBP≌△ABE.

(2)证明:∵∠CBP=∠ABE,
∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,
∴PB⊥BE.
(1)、(2)两小题可以一起证明.
证明:∵∠CBP=∠ABE,
∴∠PBE=∠ABE+∠ABP(1分)
=∠CBP+∠ABP
=90°(2分)
∴PB⊥BE.(3分)
以B为旋转中心,把△CBP按顺时针方向旋转90°.(4分)
∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分)
∴△CBP与△ABE重合,
∴△CBP≌△ABE.(6分)

(3)连接PE,
∵BE=BP,∠PBE=90°,
∴∠BPE=45°,(7分)
设AP为k,则BP=BE=2k,
∴PE2=8k2,(8分)
∴PE=2
2
k,
∵∠BPA=135°,∠BPE=45°,
∴∠APE=90°,(9分)
∴AE=3k,
在直角△APE中:cos∠PAE=class="stub"AP
AE
=class="stub"1
3
.(10分)

更多内容推荐