已知m,n为正整数.(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;(Ⅲ)求出满足等

题目简介

已知m,n为正整数.(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;(Ⅱ)对于n≥6,已知(1-1n+3)n<12,求证(1-mn+3)n<(12)m,m=1,2…,n;(Ⅲ)求出满足等

题目详情

已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-
1
n+3
)n
1
2
,求证(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.
题型:解答题难度:中档来源:湖北

答案

解法1:(Ⅰ)证:用数学归纳法证明:
当x=0时,(1+x)m≥1+mx;即1≥1成立,
x≠0时,证:用数学归纳法证明:
(ⅰ)当m=1时,原不等式成立;
当m=2时,左边=1+2x+x2,右边=1+2x,
因为x2≥0,所以左边≥右边,原不等式成立;
(ⅱ)假设当m=k时,不等式成立,即(1+x)k≥1+kx,
则当m=k+1时,∵x>-1,
∴1+x>0,于是在不等式(1+x)k≥1+kx两边同乘以1+x得
(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,
所以(1+x)k+1≥1+(k+1)x.即当m=k+1时,不等式也成立.
综合(ⅰ)(ⅱ)知,对一切正整数m,不等式都成立.
(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得(1-class="stub"1
n+3
)
m
≥1-class="stub"m
n+3
>0

于是(1-class="stub"m
n+3
)n≤(1-class="stub"1
n+3
)nm
=[(1-class="stub"1
n+3
)
n
]m<(class="stub"1
2
)m
,m=1,2,n.
(Ⅲ)由(Ⅱ)知,当n≥6时,(1-class="stub"1
n+3
)n+(1-class="stub"2
n+3
)n++(1-class="stub"n
n+3
)n<class="stub"1
2
+(class="stub"1
2
)^++(class="stub"1
2
)n=1-class="stub"1
2n
<1
,∴(class="stub"n+2
n+3
)n+(class="stub"n+1
n+3
)n++(class="stub"3
n+3
)n<1

即3n+4n+…+(n+2)n<(n+3)n.即当n≥6时,不存在满足该等式的正整数n.
故只需要讨论n=1,2,3,4,5的情形:
当n=1时,3≠4,等式不成立;
当n=2时,32+42=52,等式成立;
当n=3时,33+43+53=63,等式成立;
当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;
当n=5时,同n=4的情形可分析出,等式不成立.
综上,所求的n只有n=2,3.
解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:
当x>-1,且x≠0时,m≥2,(1+x)m>1+mx. ①
(ⅰ)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;
(ⅱ)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,
因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.
于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,
所以(1+x)k+1>1+(k+1)x.即当m=k+1时,不等式①也成立.
综上所述,所证不等式成立.
(Ⅱ)证:当n≥6,m≤n时,∵(1-class="stub"1
n+3
)n<class="stub"1
2

[(1-class="stub"1
n+3
)
m
]n<(class="stub"1
2
)m

而由(Ⅰ),(1-class="stub"1
n+3
)m≥1-class="stub"m
n+3
>0

(1-class="stub"m
n+3
)n≤[(1-class="stub"1
n+3
)
m
]n<(class="stub"1
2
)m

(Ⅲ)假设存在正整数n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,
即有(class="stub"3
n0+3
)n0+(class="stub"4
n0+3
)n0++(
n0+2
n0+3
)n0=1
. ②
又由(Ⅱ)可得(class="stub"3
n0+3
)n0+(class="stub"4
n0+3
)n0++(
n0+2
n0+3
)n0

=(1-
n0
n0+3
)n0+(1-
n0-1
n0+3
)n0++(1-class="stub"1
n0+3
)n0
<(class="stub"1
2
)n0+(class="stub"1
2
)n0-1++class="stub"1
2
=1-class="stub"1
2n0
<1
,与②式矛盾.
故当n≥6时,不存在满足该等式的正整数n.
下同解法1.

更多内容推荐