如图,Rt△ABC中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,OG⊥BC于G点.(1)求证:CE=OG;(2)若BC=3cm,,求线段AD的长.-九年级数学

题目简介

如图,Rt△ABC中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,OG⊥BC于G点.(1)求证:CE=OG;(2)若BC=3cm,,求线段AD的长.-九年级数学

题目详情

如图,Rt△ABC中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,OG⊥BC于G点.

(1)求证:CE=OG; 
(2)若BC=3cm,,求线段AD的长.
题型:解答题难度:中档来源:不详

答案

(1)首先连接OE,由⊙O切AC于点E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易证得四边形OGCE是矩形,则可证得CE=OG;(2)

试题分析:(1)首先连接OE,由⊙O切AC于点E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易证得四边形OGCE是矩形,则可证得CE=OG;
(2)由BC=3cm,,可求得AB的长,易证得△AEO∽△ACB,然后根据相似三角形的对应边成比例,可求得OB的长,继而求得AD的长.
(1)连接OE

∵⊙O切AC于点E,
∴OE⊥AC,即∠OEC=90°,
∵OG⊥BC,
∴∠CGO=90°,
∵Rt△ABC中,∠C=Rt∠,
∴四边形OGCE是矩形,
∴CE=OG;
(2)在Rt△ABC中,

∵BC=3cm,
∴AB=BC÷cosB=5(cm),
∵∠A=∠A,∠AEO=∠ACB=90°,
∴△AEO∽△ACB,
,即,解得


点评:此题综合性较强,难度适中,注意掌握方程思想与数形结合思想的应用.

更多内容推荐