如图,在棱长为3的正方体ABCD-A1B1C1D1中,M、N分别是棱A1B1、A1D1的中点,则点B到平面AMN的距离是()A.92B.3C.655D.2-数学

题目简介

如图,在棱长为3的正方体ABCD-A1B1C1D1中,M、N分别是棱A1B1、A1D1的中点,则点B到平面AMN的距离是()A.92B.3C.655D.2-数学

题目详情

如图,在棱长为3的正方体ABCD-A1B1C1D1中,M、N分别是棱A1B1、A1D1的中点,则点B到平面AMN的距离是(  )
A.
9
2
B.
3
C.
6
5
5
D.2
360优课网
题型:单选题难度:偏易来源:崇文区二模

答案


360优课网
设AC的中点为O,MN的中点为E,连接AE,作OG⊥AE于G,
易证OG即是点B到平面AMN的距离.作出截面图,
如图所示,由AA1=3,AO=
3
2
2
,AE=class="stub"9
2
2

△AA1E△OGA,计算得OG=2,
故选D.

更多内容推荐