已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:(1)点C′到平面ABED的距离;(2)C′到边AB的距离;

题目简介

已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:(1)点C′到平面ABED的距离;(2)C′到边AB的距离;

题目详情

已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:
(1)点C′到平面ABED的距离;
(2)C′到边AB的距离;
(3)C′到AD的距离.
题型:解答题难度:偏易来源:不详

答案

(1)作FH⊥AB于H,作FG⊥AD于G,
则C′H⊥AB,,可算得BE=4cm,HB=2cm,
到平面ABED的距离为cm
到平面AB的距离为cm
到平面AD的距离为cm

更多内容推荐