(文)已知数列{an}的前n项和为Sn,a1=14且Sn=Sn-1+an-1+12,数列{bn}满足b1=-1194且3bn-bn-1=n(n≥2且n∈N*).(1)求{an}的通项公式;(2)求证:

题目简介

(文)已知数列{an}的前n项和为Sn,a1=14且Sn=Sn-1+an-1+12,数列{bn}满足b1=-1194且3bn-bn-1=n(n≥2且n∈N*).(1)求{an}的通项公式;(2)求证:

题目详情

(文)已知数列{an}的前n项和为Sn,a1=
1
4
且Sn=Sn-1+an-1+
1
2
,数列{bn}满足b1=-
119
4
且3bn-bn-1=n(n≥2且n∈N*).
(1)求{an}的通项公式;
(2)求证:数列{bn-an}为等比数列;
(3)求{bn}前n项和的最小值.
题型:解答题难度:中档来源:不详

答案

(1)由Sn=Sn-1+an-1+class="stub"1
2
,得Sn-Sn-1=an-1+class="stub"1
2
,2an=2a n-1+1,an-a n-1+class="stub"1
2
…2分
∴an=a1+(n-1)d=class="stub"1
2
n-class="stub"1
4

(2)证明:∵3bn-bn-1=n,∴bn=class="stub"1
3
bn-1+class="stub"1
3
n,
∴bn-an=class="stub"1
3
bn-1+class="stub"1
3
n-class="stub"1
2
n+class="stub"1
4
=class="stub"1
3
bn-1-class="stub"1
6
n+class="stub"1
4
=class="stub"1
3
(bn-1-class="stub"1
2
n+class="stub"3
4
);
bn-1-an-1=bn-1-class="stub"1
2
(n-1)+class="stub"1
4
=bn-1-class="stub"1
2
n+class="stub"3
4

∴由上面两式得
bn-an
bn-1-an-1
=class="stub"1
3
,又b1-a1=-class="stub"119
4
-class="stub"1
4
=-30
∴数列{bn-an}是以-30为首项,class="stub"1
3
为公比的等比数列.
(3)由(2)得bn-an=-30×(class="stub"1
3
)
n-1

bn=an-30×(class="stub"1
3
)
n-1
=class="stub"1
2
n-class="stub"1
4
-30×(class="stub"1
3
)
n-1

bn-bn-1=class="stub"1
2
n-class="stub"1
4
-30×(class="stub"1
3
)
n-1
-class="stub"1
2
(n-1)+class="stub"1
4
+30×(class="stub"1
3
)
n-2

=class="stub"1
2
+ 30×(class="stub"1
3
)
n-2
(1-class="stub"1
3
)

=class="stub"1
2
+ 20×(class="stub"1
3
)
n-2
>0,∴{bn}是递增数列
当n=1时,b1=-class="stub"119
4
<0;当n=2时,b2=class="stub"3
4
-10
<0;
当n=3时,b3=class="stub"5
4
-class="stub"10
3
<0;当n=4时,b4=class="stub"7
4
-class="stub"10
9
>0,
所以,从第4项起的各项均大于0,故前3项之和最小.
且S3=class="stub"1
4
(1+3+5)-30-10-class="stub"10
3
=-41class="stub"1
12

更多内容推荐