如图,矩形ABCD中,AB=3,AD=5.点E是AD上的动点,以CE为直径的⊙O与BC交于点F,过点F作FG⊥BE于点G.(1)若FG是⊙O的切线,求DE的长度;(2)试探究:BE能否与⊙O相切?若能

题目简介

如图,矩形ABCD中,AB=3,AD=5.点E是AD上的动点,以CE为直径的⊙O与BC交于点F,过点F作FG⊥BE于点G.(1)若FG是⊙O的切线,求DE的长度;(2)试探究:BE能否与⊙O相切?若能

题目详情

如图,矩形ABCD中,AB=3,AD=5.点E是AD上的动点,以CE为直径的⊙O与BC交于点F,过点F作FG⊥BE于点G.
(1)若FG是⊙O的切线,求DE的长度;
(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长度;若不能,请说明理由.360优课网
题型:解答题难度:中档来源:不详

答案

(1)连接EF,FD;
∵GF为圆的切线且又和EB垂直,
∴BEFD,
∴∠BEF=∠DFE;
又∵∠DFE=∠FEC,
∴∠BEF=∠CEF,
∴EF为∠BEC的平分线;
∵∠EFC=90°,
∴EF⊥BC,
∴BE=CE
∴△BEC为等腰三角形,
∴BF为BC的一半;
∵EDBF,
∴四边形BEDF为平行四边形,
即ED=BF=2.5;
360优课网


(2)BE不能与⊙O相切.
∵若BE与圆相切,
∴BE⊥EC;
∴△BEC是圆内接三角形,即BC为直径,EF为一个半径,
∵最短为3>2.5,
∴BE不能与⊙O相切.

更多内容推荐