如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.(1)若sin∠BAD=35,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留

题目简介

如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.(1)若sin∠BAD=35,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留

题目详情

如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=
3
5
,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).
题型:解答题难度:中档来源:不详

答案

(1)∵AB是⊙O的直径,OD=5,
∴∠ADB=90°,AB=10,
在Rt△ABD中,sin∠BAD=class="stub"BD
AB
,sin∠BAD=class="stub"3
5

class="stub"BD
10
=class="stub"3
5
,BD=6,
∴AD=
AB2-BD2
=
102-62
=8,
∵∠ADB=90°,AB⊥CD,
∴DE•AB=AD•BD,CE=DE,
∴DE×10=8×6,
∴DE=class="stub"24
5

∴CD=2DE=class="stub"48
5


(2)∵AB是⊙O的直径,AB⊥CD,
CB
=
BD
AC
=
AD

∴∠BAD=∠CDB,∠AOC=∠AOD,
∵AO=DO,
∴∠BAD=∠ADO,
∴∠CDB=∠ADO,
设∠ADO=4x,则∠CDB=4x.
由∠ADO:∠EDO=4:1,则∠EDO=x.
∵∠ADO+∠EDB+∠EDO=90°,
∴4x+4x+x=90°,
解得:x=10°,
∴∠AOD=180°-(∠OAD+∠ADO)=100°,
∴∠AOC=∠AOD=100°,
∴S扇形OAC=class="stub"100
360
×π×52=class="stub"125
18
π

更多内容推荐