设f(x)=sin2x+mcos2x,若对一切x∈R,都有f(x)≤f(π8),则f(π24)=______.-数学

题目简介

设f(x)=sin2x+mcos2x,若对一切x∈R,都有f(x)≤f(π8),则f(π24)=______.-数学

题目详情

设f(x)=sin2x+mcos2x,若对一切x∈R,都有f(x)≤f(
π
8
)
,则f(
π
24
)
=______.
题型:填空题难度:中档来源:不详

答案

由题意知:
f(x)=sin2x+mcos2x=
m2+1
sin(2x+φ),(sinφ=class="stub"m
m2+1
,cosφ=class="stub"1
m2+1

由题意得:当x=class="stub"π
8
时函数f(x)=sin2x+mcos2x取到最值±
m2+1

将x=class="stub"π
8
代入可得:sin(2×class="stub"π
8
)+mcos(2×class="stub"π
8
)=
2
2
(m+1)
m2+1
,即m=1
∴f(x)=sin2x+mcos2x=sin2x+cos2x=
2
sin(2x+class="stub"π
4
),
则f(class="stub"π
24
)=
2
sin(2×class="stub"π
24
+class="stub"π
4
)=
2
sinclass="stub"π
3
=
6
2

故答案为:
6
2

更多内容推荐