已知un=an+an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).(Ⅰ)当a=b时,求数列{un}的前n项和Sn;(Ⅱ)求limn→∞unun-1.-数学

题目简介

已知un=an+an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).(Ⅰ)当a=b时,求数列{un}的前n项和Sn;(Ⅱ)求limn→∞unun-1.-数学

题目详情

已知un=an+an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).
(Ⅰ)当a=b时,求数列{un}的前n项和Sn
(Ⅱ)求
lim
n→∞
un
un-1
题型:解答题难度:中档来源:天津

答案

(Ⅰ)当a=b时,un=(n+1)an.这时数列{un}的前n项和Sn=2a+3a2+4a3++nan-1+(n+1)an. ①
①式两边同乘以a,得aSn=2a2+3a3+4a4++nan+(n+1)an+1②
①式减去②式,得(1-a)Sn=2a+a2+a3++an-(n+1)an+1
若a≠1,(1-a)Sn=
a(1-an)
1-a
-(n+1)an+1+a,
Sn=
a(1-an)
(1-a)2
+
a-(n+1)an+1
1-a
=
(n+1)an+2-(n+2)an+1-a2+2a
(1-a)2

若a=1,Sn=2+3++n+(n+1)=
n(n+3)
2

(Ⅱ)由(Ⅰ),当a=b时,un=(n+1)an,
lim
n→∞
un
un-1
=
lim
n→∞
(n+1)an
nan-1
=
lim
n→∞
a(n+1)
n
=a.
当a≠b时,un=an+an-1b++abn-1+bn=an[1+class="stub"b
a
+(class="stub"b
a
)2
+(class="stub"b
a
)n
]=an
1-(class="stub"b
a
)n+1
1-class="stub"b
a
=class="stub"1
a-b
(an+1-bn+1)
此时,
un
un-1
=
an+1-bn+1
an-bn

若a>b>0,
lim
n→∞
un
un-1
=
lim
n→∞
an+1-bn+1
an-bn
=
lim
n→∞
a-b(class="stub"b
a
)
n
1-(class="stub"b
a
)
n
=a.
若b>a>0,
lim
n→∞
un
un-1
=
lim
n→∞
a(class="stub"a
b
)
n
-b
(class="stub"a
b
)
n
-1
=b.

更多内容推荐