已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β)证明:.-高三数学

题目简介

已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β)证明:.-高三数学

题目详情

已知a>0,函数f(x)=lnx﹣ax2,x>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β)证明:
题型:解答题难度:中档来源:湖南省月考题

答案

(I)解:
令f′(x)=0,解得x=
当x变化时,f'(x),f(x)的变化情况如下表:所以,f(x)的单调递增区间是 的单调递减区间是 
(II)证明:由f(α)=f(β)及(I)的结论知 ,
从而f(x)在[α,β]上的最小值为f(a).
又由β﹣α≥1,α,β∈[1,3],
知1≤α≤2≤β≤3.
,即 
从而,

更多内容推荐