如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF

题目简介

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF

题目详情

如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立。
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G。
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长。
题型:解答题难度:偏难来源:中考真题

答案

解(1)BD=CF成立,理由:
∵△ABC是等腰直角三角形,四边形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS),
∴BD=CF;
(2)①证明:设BG交AC于点M,
∵△BAD≌△CAF(已证),
∴∠ABM=∠GCM,
∵∠BMA=∠CMG,
∴△BMA∽△CMG,
∴∠BGC=∠BAC=90°,
∴BD⊥CF,
②过点F作FN⊥AC于点N,
∵在正方形ADEF中,AD=DE=
∴AE==2,
∴AN=FN=AE=1,
∵在等腰直角△ABC 中,AB=4,
∴CN=AC﹣AN=3,BC==4
∴在Rt△FCN中,tan∠FCN==
∴在Rt△ABM中,tan∠ABM==tan∠FCN=
∴AM=AB=
∴CM=AC﹣AM=4﹣=,BM==
∵△BMA∽△CMG,



∴CG=
∴在Rt△BGC中,BG==

更多内容推荐