如图,在矩形纸片ABCD中,AB=6,BC=8,把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在

题目简介

如图,在矩形纸片ABCD中,AB=6,BC=8,把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在

题目详情

如图,在矩形纸片ABCD中,AB=6,BC=8,把△BCD沿对角线BD折叠,使点C 落在C ′处,BC ′交AD 于点G ;E 、F 分别是C ′D 和BD 上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合。
(1)求证:△ABG≌△C ′DG ;
(2)求tan∠ABG的值;
(3)求EF的长。
题型:解答题难度:中档来源:广东省中考真题

答案

解:(1)∵△BDC ′由△BDC 翻折而成,
∴∠C= ∠BAG=90 °,C′D=AB=CD ,∠AGB=∠DGC′,
∴∠ABG= ∠ADE ,
在:△ABG ≌△C′DG 中,

∴△ABG≌△C′DG;
(2)∵由(1)可知△ABG≌△C′DG,
∴GD=GB,
∴AG+GB=AD,
设AG=x,则GB=8﹣x,
在Rt△ABG中,
∵AB2+AG2=BG2,
即62+x2=(8﹣x)2,
解得x=
∴tan∠ABG===
(3)∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=AD=4,
∴tan∠ABG=tan∠ADE=
∴EH=HD×=4×=
∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位线,
∴HF=AB=×6=3,
∴EF=EH+HF=+3=

更多内容推荐