数列的前项和为,().(Ⅰ)证明数列是等比数列,求出数列的通项公式;(Ⅱ)设,求数列的前项和;(Ⅲ)数列中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若-数学

题目简介

数列的前项和为,().(Ⅰ)证明数列是等比数列,求出数列的通项公式;(Ⅱ)设,求数列的前项和;(Ⅲ)数列中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若-数学

题目详情

数列的前项和为).
(Ⅰ)证明数列是等比数列,求出数列的通项公式;
(Ⅱ)设,求数列的前项和
(Ⅲ)数列中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1)  (2) (3)不存在
(Ⅰ)因为,所以
,所以
数列是等比数列,

所以
(Ⅱ)

,①
,②
①-②得,

所以
(Ⅲ)设存在,且,使得成等差数列,则

为偶数,而为奇数,
所以不成立,故不存在满足条件的三项.

更多内容推荐