如图,在四棱锥O﹣ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.求证:(Ⅰ)直线MC∥平面OAB;(Ⅱ)直线BD⊥直线OA.-高三数学

题目简介

如图,在四棱锥O﹣ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.求证:(Ⅰ)直线MC∥平面OAB;(Ⅱ)直线BD⊥直线OA.-高三数学

题目详情

如图,在四棱锥O﹣ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.求证:
(Ⅰ)直线MC∥平面OAB;
(Ⅱ)直线BD⊥直线OA.
题型:证明题难度:中档来源:江苏月考题

答案

证明:(1)设N是OA的中点,连接MN,NB,
因为M是OD的中点,
所以MN∥AD,且2MN=AD,
又AD∥BC,AD=2BC,
所以MNBC是平行四边形,
所以MC∥NB,
又MC 不在平面OAB上,
NB平面OAB,
所以直线MC∥平面OAB;
(2)设H是BD的中点,连接AH,
因为AB=AD,所以AH⊥BD,
又因为OB=OD,所以OH⊥BD
所以BD⊥面OAH
所以BD⊥OA.

更多内容推荐