优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=22(Ⅰ)求证:EF∥平面A1BC1;(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,
在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=22(Ⅰ)求证:EF∥平面A1BC1;(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,
题目简介
在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=22(Ⅰ)求证:EF∥平面A1BC1;(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,
题目详情
在长方体ABCD-A
1
B
1
C
1
D
1
中,E,F分别是AD,DD
1
的中点,AB=BC=2,A
1
A=2
2
(Ⅰ)求证:EF
∥
平面A
1
BC
1
;
(Ⅱ)在线段BC
1
是否存在点P,使直线A
1
P与C
1
D垂直,如果存在,求线段A
1
P的长,如果不存在,请说明理由.
题型:解答题
难度:中档
来源:不详
答案
证明:(Ⅰ)连接AD1,在长方体ABCD-A1B1C1D1中,
AB
∥
.
.
D
1
C
1
,则四边形ABC1D1是平行四边形,
∴AD1
∥
BC1,
又∵E,F分别是AD,DD1的中点
∴AD1
∥
EF,
∴EF
∥
BC1,又EF⊄面A1BC1,BC1⊂面A1BC1,
∴EF
∥
平面A1BC1(3分)
(II)在平面CC1D1D中作D1Q⊥C1D交CC1于Q,
过Q作QP
∥
CB交BC1于点P,则A1P⊥C1D.(7分)
因为A1D1⊥平面CC1D1D,C1D⊂平面CC1D1D,
∴C1D⊥A1D1,而QP
∥
CB,CB
∥
A1D1,∴QP
∥
A1D1,
又∵A1D1∩D1Q=D1,∴C1D⊥平面A1PQC1,
且A1P⊂平面A1PQC1,∴A1P⊥C1D.(10分)
∵△D1C1Q
∽
Rt△C1CD,
∴
C
1
Q
CD
=
D
1
C
1
C
1
C
,∴C1Q=
2
又∵PQ
∥
BC,
∴PQ=
class="stub"1
2
BC=1.
∵四边形A1PQD1为直角梯形,且高D1Q=
6
,
∴A1P=
(2-1
)
2
+6
=
7
.(14分)
上一篇 :
如图,已知四棱锥P-ABCD底面ABCD
下一篇 :
(理)如图,四棱锥P-ABCD的底面是矩
搜索答案
更多内容推荐
在下列条件中,可判断平面α与β平行的是[]A.α、β都垂直于平面γB.α内存在不共线的三点到β的距离相等C.l,m是α内两条直线,且l∥β,m∥βD.l,m是两条异面直线,且l∥α,m∥α,l-高三数
如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=12AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=6.(1)求证:AB1∥平面DEC.(2)求证:A1E⊥
四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足PE=13PD.(1)求证:PA⊥平面ABCD;(2)求二面角E-AE-D的余弦值.-高三数学
已知a、b是直线,α、β、γ是平面,给出下列命题:①若α∥β,a,则a∥β;②若a、b与α所成的角相等,则a∥b;③若α⊥β、β⊥γ,则α∥γ;④若a⊥α,a⊥β,则α∥β。其中正确的命题的序号是[]
如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD1⊥平面ACB1(3)求三棱锥B-ACB1体积.-高二数学
给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条-数学
如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.(1)若C1M=32,求异面直线A1M和C1D1所成角的正切值;(2)是否存在这样的点M使得BM⊥平
如图(1)在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1,G2,G3三点重合于G,下面结论成立的是()A.SG⊥平面E
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2。(1)求证:A1
已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β。其中正确的命题是[]A.①④B.②④C.①③④D.
设α、β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件-高三数学
如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EF∥BC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.(1)求证:EG⊥平面CDE;(2)在棱BC是否存在点M,
如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是()A.AC1⊥平面A1BDB.H是△A1BD的垂心C.AH=33D.直线AH和BB1所成角为45°-高二数学
已知直线m⊥平面α,直线n在平面β内,给出下列四个命题:①α∥β⇒m⊥n;②α⊥β⇒m∥n;③m⊥n⇒α∥β;④m∥n⇒α⊥β,其中真命题的序号是______.-数学
已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是[]A.,m∥β,n∥βα∥βB.α∥β,m∥nC.m∥α,m∥nD.m∥α,m∥n-高二数学
如图,ABCD-A1B1C1D1是正方体,点E,F分别是BB1,B1D1中点,求证:EF⊥DA1.-高二数学
下列命题正确的是[]A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线在平面α内的射影平行,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线-高三数学
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M是棱PC的中点,PA⊥平面ABCD,AC、BD交于点O.(1)已知:PA=2,求证:AM⊥平面PBD;(2)若二面角M-A
如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=2.等边三角形ADB以AB为轴运动.当CD=______时,面ACD⊥面ADB.-高三数学
如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N
如图,四棱锥P-ABCD的底面是AB=2,BC=3的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.(Ⅰ)求证:面PAD⊥面PAB.(Ⅱ)求二面角P-CD-A的大小.-高二数学
如图,在正方体ABCD-A1B1C1D1中,E,F,M分别是BB1,CC1与AB的中点,(1)求证:AE∥平面A1DF;(2)求证:A1M⊥平面AED;(3)正方体棱长为2,求三棱锥A1-DEF的体积
四面体P-ABC中,若PA⊥平面ABC,当添加一个条件______后,该四面体各个面中直角三角形最多.-数学
如图,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,(1)求证:DF∥平面ABC;(2)求证:AF⊥平面BDF.-高二数学
下列四个命题中,假命题是()A.若平面内有两条相交直线与平面内的两条相交直线分别平行,则两个平面平行B.平行于同一平面的两个平面平行C.如果平面内有无数条直线都与平面平行-数学
设m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m⊥α,m⊥β,则α∥β;③若m、n是异面直线,,则α∥β;④若,则α∥β;其中正确-
设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是[]A.若m⊥n,m⊥α,n∥β,则α∥βB.若m∥α,n∥β,α∥β,则m∥nC.若m⊥α,n∥β,α∥β,则m⊥nD.若m∥n,m
在空间中,给出下面四个命题,则其中正确命题的个数为①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面-高三数学
如图,几何体A1C1-ABC中,四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线B
如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.(1)求证:PA∥平面MBD;(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.(Ⅰ)求证:PC⊥平面BDE;(Ⅱ)若点Q是线段PA上任一点,求证:
下面给出四个命题:①直线l与平面a内两直线都垂直,则l⊥a.②经过直线a有且仅有一个平面垂直于直线b;③过平面a外两点,有且只有一个平面与a垂直.④直线l同时垂直于平面α、β,则α∥-数学
关于直线m、n和平面a、b有以下四个命题:①当m∥a,n∥b,a∥b时,m∥n;②当m∥n,mìa,n⊥b时,a⊥b;③当a∩b=m,m∥n时,n∥a且n∥b;④当m⊥n,a∩b=m时,n⊥a或n⊥b
如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
求证:夹在两个平行平面间的平行线段相等。-高一数学
如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:BC⊥平面ACFE;(2)求二面角A-BF-C的平面角
如图,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中点.(1)求证:AC⊥B1D;(2)若B1D⊥平面ACE,求AA1AB的值.-高二数学
在空间中,设m,n为两条不同的直线,α,β为两个不同的平面,给定下列条件:①α⊥β且m⊂β;②α∥β且m⊥β;③α⊥β且m∥β;④m⊥n且n∥α,其中可以判定m⊥α的有()A.1个B.2个C.3个D.
如图,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.(1)求证:AC⊥平面BB1C1C;(2)在A1B1上是否存一点P,使得DP与平
在三棱锥S-ABC中,△ABC是边长为23的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.(1)证明:AC⊥SB;(2)求三棱锥B-CMN的体积.-高三数学
如图,AB是圆O的直径,点C是圆O上的动点,过点A的直线VA垂直于圆O所在的平面ABC,VB与平面ABC成30°的角,D,E分别是线段VB,VC的中点.(1)求证:DE∥平面ABC;(2)求证:平面V
如图:已知△PAB所在的平面与菱形ABCD所在的平面垂直,且PA=PB=22AB,∠ABC=60°,E为AB的中点.(Ⅰ)证明:CE⊥PA;(Ⅱ)若F为线段PD上的点,且EF与平面PEC的夹角为45°
已知直线l⊥平面α,有以下几个判断:①若m⊥l,则m∥α,②若m⊥α,则m∥l③若m∥α,则m⊥l,④若m∥l,则m⊥α,上述判断中正确的是()A.①②③B.②③④C.①③④D.①②④-高二数学
已知四棱锥P-ABCD,底面是边长为2的正方形,PA⊥底面ABCD,PA=22,求直线PA与底面ABCD所成角.-高二数学
四面体ABCD中,AC=BD,E,F分别为AD,BC的中点,且EF=22AC,∠BDC=90°,求证:BD⊥平面ACD.-数学
如图,正三棱柱ABC-A1B1C1的各棱长都为m,E是侧棱CC1的中点,求证AB1⊥平面A1BE.-高二数学
如图,A,B,C为不在同一条直线上的三点,∥∥,且==。求证:平面ABC∥平面。-高一数学
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.(Ⅰ)求证:DE⊥平面BCE;(Ⅱ)求证:AF∥平面BDE.-高二数学
如图,四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°,侧面PAD为正三角形,其所在的平面垂直于底面ABCD,求证:AD⊥PB.-数学
已知一个四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形的个数是()A.4B.3C.2D.1-高一数学
返回顶部
题目简介
在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=22(Ⅰ)求证:EF∥平面A1BC1;(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,
题目详情
(Ⅰ)求证:EF∥平面A1BC1;
(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.
答案
AB
∴AD1∥BC1,
又∵E,F分别是AD,DD1的中点
∴AD1∥EF,
∴EF∥BC1,又EF⊄面A1BC1,BC1⊂面A1BC1,
∴EF∥平面A1BC1(3分)
(II)在平面CC1D1D中作D1Q⊥C1D交CC1于Q,
过Q作QP∥CB交BC1于点P,则A1P⊥C1D.(7分)
因为A1D1⊥平面CC1D1D,C1D⊂平面CC1D1D,
∴C1D⊥A1D1,而QP∥CB,CB∥A1D1,∴QP∥A1D1,
又∵A1D1∩D1Q=D1,∴C1D⊥平面A1PQC1,
且A1P⊂平面A1PQC1,∴A1P⊥C1D.(10分)
∵△D1C1Q∽Rt△C1CD,
∴
又∵PQ∥BC,
∴PQ=
∵四边形A1PQD1为直角梯形,且高D1Q=
∴A1P=