如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD1⊥平面ACB1(3)求三棱锥B-ACB1体积.-高二数学

题目简介

如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD1⊥平面ACB1(3)求三棱锥B-ACB1体积.-高二数学

题目详情

如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求证:BD1⊥平面ACB1
(3)求三棱锥B-ACB1体积.
题型:解答题难度:中档来源:不详

答案

(1)证明:∵AC⊥BD,AC⊥BB1,
∴AC⊥平面B1D1DB.
(2)证明:连接A1B,在正方体ABCD-A1B1C1D1中,
面A1B1BA是正方形,对角线A1B⊥AB1,
在正方体ABCD-A1B1C1D1中,D1A1⊥面A1B1BA,AB1在面A1B1BA上,
∴D1A1⊥AB1,
∵AB1⊥A1B,AB1⊥D1A1,
A1B和D1A1是面A1BD1内的相交直线,
∴AB1⊥面A1BD1,又BD1在面A1BD1上,
∴AB1⊥BD1,同理,D1D⊥面ABCD,
AC在面ABCD上,D1D⊥AC,
在正方形ABCD中对角线AC⊥BD,
∵AC⊥D1D,AC⊥BD,D1D和BD是面BDD1内的相交直线,
∴AC⊥面BDD1,又BD1在面BDD1上,
∴AC⊥BD1,
∵BD1⊥AB1,BD1⊥AC,
AB1和AC是面ACB1内的相交直线
∴BD1⊥面ACB1.
(3)三棱锥B-ACB1,也就是ABC为底,BB1为高的三棱锥,
三棱锥B-ACB1体积
V=class="stub"1
2
×AB×AD×class="stub"1
3
BB1=class="stub"1
6

更多内容推荐