如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=12AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=6.(1)求证:AB1∥平面DEC.(2)求证:A1E⊥

题目简介

如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=12AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=6.(1)求证:AB1∥平面DEC.(2)求证:A1E⊥

题目详情

如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=
1
2
AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=
6

(1)求证:AB1平面DEC.
(2)求证:A1E⊥平面DEC.
题型:解答题难度:中档来源:不详

答案

证明:(1)∵侧棱AA1⊥底面ABC,BB1AA1,∴BB1⊥底面ABC,∴BB1⊥BD.
在Rt△ABC,∵∠ACB=90°,∴AB2=AC2+BC2=22+22=8,解得AB=2
2

在Rt△BDE中,由勾股定理可得DE2=BD2+BE2,∴(
6
)2=(
2
)2+BE2
,解得BE=2.
BE=class="stub"1
2
BB1

连接AB1,则AB1DE.
∵AB1⊄平面DEC,DE⊂平面DEC,
∴AB1平面DEC.
(2)∵A1D2=AA12+AD2=42+(
2
)2
=18,A1E2=A1B12+B1E2=(2
2
)2+22
=12,DE2=6,
A1D2=A1E2+DE2
∠AE1D=90°.∴A1E⊥ED.
在△ACB中,∵AC=CB,AD=DB,∴CD⊥AB,
∵侧面AA1B1B⊥底面ABC,∴CD⊥侧面AA1B1B.
∴CD⊥A1E.
∵DE∩CD=D.∴A1E⊥平面DEC.

更多内容推荐