平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(a,a),其中a使得式子有意义,反比例函数的图象经过点C.(1)求反比例函数解析式.(2)若有一点D自A向O运动,当满足AD2=O-九年级数学

题目简介

平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(a,a),其中a使得式子有意义,反比例函数的图象经过点C.(1)求反比例函数解析式.(2)若有一点D自A向O运动,当满足AD2=O-九年级数学

题目详情

平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(aa),其中a使得式子有意义,反比例函数的图象经过点C.

(1)求反比例函数解析式.
(2)若有一点D自A向O运动,当满足AD2=OD·AO时,求此时D点坐标.
(3)若点D在AO上、G为OB的延长线上的点,AD=BG,连接AB交DG于点H,写出AB-2HB与AD之间的数量关系(直接写出不需证明).
(4)如图,点E为正方形AOBC的OB边一点,点F为BC上一点且∠CAE=∠FEA=60°,求直线EF的解析式.
题型:解答题难度:中档来源:不详

答案

(1)(2)(0,)(3)AB-2HB=AD(4)
(1)
把C(1,1)代入      ∴(3分)
(2)OA=1,OD=1-AD        AD2=OD·AO=1·(1-AD)
AD2+AD-1=0       AD=   ∵AD>0   ∴AD=
OD=      故D(0,)(7分)
(3)AB-2HB=AD(10分)
(4)∵∠CAE=∠FEA=60°    ∴∠OAE=30°   OA=1,设OE=x,则AE=2x
  解得,OE=
∠BEF=180°-∠OEA-∠AEF=60°    BE=1-OE=1   FE=2
BF=    ∴E()   F(1,
设解析式为
      解得
    (14分)
(1)通过有意义,求得a=1,从而求得C点坐标和反比例函数的解析式
(2)通过AD2=OD·AO求得AD的长,从而求得D点坐标
(3)因为若点D在AO上、G为OB的延长线上的点,AD=BG,连接AB交DG于点H,则利用三角形相似得到结论。
(4)因为点E为正方形AOBC的OB边一点,点F为BC上一点且∠CAE=∠FEA=60°,那么设出设OE=x,则AE=2x,利用勾股定理得到x的值,然后根据直角三角形BEF,得到点B,F
的坐标,设出直线的解析式,然后代入点的坐标,得参数的值,解得。

更多内容推荐