已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线y=(k2>0)的交点.(1)过点A作AM⊥x轴,垂足为M,连结BM.若AM=BM,求点B的坐标;(2)设点P在线段AB上,过点P作PE⊥

题目简介

已知点A(1,c)和点B(3,d)是直线y=k1x+b与双曲线y=(k2>0)的交点.(1)过点A作AM⊥x轴,垂足为M,连结BM.若AM=BM,求点B的坐标;(2)设点P在线段AB上,过点P作PE⊥

题目详情

已知点A(1,c)和点B (3,d )是直线y=k1x+b与双曲线y=(k2>0)的交
点.
(1)过点A作AM⊥x轴,垂足为M,连结BM.若AM=BM,求点B的坐标;
(2)设点P在线段AB上,过点P作PE⊥x轴,垂足为E,并交双曲线y=(k2>0)于点N.当  取最大值时,若PN= ,求此时双曲线的解析式.
题型:解答题难度:中档来源:不详

答案

(1)(3,)(2)y=
(1)解:∵点A(1,c)和点B (3,d )在双曲线y=(k2>0)上,

∴ c=k2=3d 。
∵ k2>0, ∴ c>0,d>0。
∴A(1,c)和点B (3,d )都在第一象限。
∴ AM=3d。
过点B作BT⊥AM,垂足为T。
∴ BT=2,TM=d。
∵ AM=BM,∴ BM=3d。
在Rt△BTM中,TM 2+BT2=BM2,即 d2+4=9d2,∴ d=
∴点B(3,)。
(2)∵ 点A(1,c)、B(3,d)是直线y=k1x+b与双曲线y=(k2>0)的交点,

∴c=k2,,3d=k2,c=k1+b,d=3k1+b。
∴k1=-k2,b=k2。
∵ A(1,c)和点B (3,d )都在第一象限,
∴ 点P在第一象限。设P(x,k1x+b),
 =x2+x=-x2+x。

∵当x=1,3时,=1,又∵当x=2时, 的最大值是
∴1≤.。∴ PE≥NE。
-1=
∴当x=2时,的最大值是
由题意,此时PN=,∴ NE=。∴ 点N(2,) 。 ∴ k2=3。
∴此时双曲线的解析式为y=
(1)过点B作BT⊥AM,由点A(1,c)和点B(3,d)都在双曲线y=(k2>0)上,得到c=3d,则A点坐标为(1,3d),在Rt△BTM中应用勾股定理即可计算出d的值,即可确定B点坐标。
(2)P(x,k1x+b),求出关于x的二次函数,应用二次函数的最值即可求得的最大值,此时根据PN=求得NE=,从而得到N(2,),代入y=即可求得k2=3。因此求得反比例函数的解析式为y=

更多内容推荐