(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,小题1:(1)找出当AP+BP能得到最小值时,点P的位置,并证明小题2:-九年级数学

题目简介

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,小题1:(1)找出当AP+BP能得到最小值时,点P的位置,并证明小题2:-九年级数学

题目详情

(本小题满分7分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,
小题1:(1)找出当AP+BP能得到最小值时,点P的位置,并证明
小题2:(2)求出AP+BP最小值
题型:解答题难度:中档来源:不详

答案


小题1:(1)证明:过A作AA’⊥MN于E,联结BA’ ……1分
MN过圆心O
AE=EA’                       
AP= PA’即AP+BP=PA’+BP  …………………2分
根据两点间线段最短,

当A’,P,B三点共线时PA’+BP=BA',AP+BP此时为最小值…………………3分
P位于A’B与MN的交点处 …………………4分
小题2:(2)解:点A是半圆上的一个三等分点
    …………………5
点B是弧AN的中点
…………………6分
OB=OA=1
BA’=即AP+BP最小值为…………………7分

更多内容推荐