如图,△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于,则扇形OCED的面积等于().A.πB.πC.πD.π-九年级数学

题目简介

如图,△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于,则扇形OCED的面积等于().A.πB.πC.πD.π-九年级数学

题目详情

如图,△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于,则扇形OCED的面积等于(  ).

A.π            B.π             C.π            D.π
题型:单选题难度:中档来源:不详

答案

B
分析:根据切线的性质得到直角△AOE,由∠A=30°,得到∠AOE=60°,然后在直角△COF中,求出圆的半径,再用扇形面积公式计算出扇形的面积.
解答:解:如图:

∵AB与⊙O相切,
∴OE⊥AB.
∵OA=OB,∠A=30°,
∴∠AOE=∠BOE=60°,
∴OE垂直平分CD.
设OE交CD于F,在直角△COF中,CF=CD=
∴CO=2,
∴S扇形OCED==π.
故选B.

更多内容推荐