已知函数f(x)=4x+a1+x2的单调递增区间为[m,n](1)求证f(m)f(n)=-4;(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上

题目简介

已知函数f(x)=4x+a1+x2的单调递增区间为[m,n](1)求证f(m)f(n)=-4;(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上

题目详情

已知函数f(x)=
4x+a
1+x2
的单调递增区间为[m,n]
(1)求证f(m)f(n)=-4;
(2)当n-m取最小值时,点p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函数f(x)图象上的两点,若存在x0使得f′(x0)=
f(x2)-f(x1)
x2-x1
,x求证x1<|x0|<x2
题型:解答题难度:中档来源:不详

答案

(1)f′(x)=
-4x2-2ax+4
(1+x2)2

依题意,m,n是方程-4x2-2ax+4=0的两根,
m+n=-class="stub"a
2
mn=-1

f(m)f(n)=class="stub"4m+a
1+m2
•class="stub"4n+a
1+n2

=
16mn+4a(m+n)+a2
(mn)2+(m+n)2-2mn+1

=
-(16+a2)
a2
4
+4
=-4.
(2)∵n-m=
(m+n)2-4x1x2

=
a2
4
+4
≥2

∴n-m取最小值时,a=0,n=1,m=-1,
∵f(x)在[-1,1]是增函数,0<x1<x2<1,
f(x0)=
f(x2)-f(x1)
x2-x1
>0,从而x0∈(-1,1).
f′(x0)=
4(1-x02)
(1+x02)2
=
f(x2)-f(x1)
x2-x1
=
4(1-x1x2)
(1+x12)(1+x22)

(1-x02)
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)

(1+x12)(1+x22)=x12x22+x12+x22+1
>(x1x2)2+2x1x2+1
=(1+x1x2)2
1-x02
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)
1-x1x2
(1+x1x2)2

设g(x)=class="stub"1-x
(1+x)2
,则g′(x)=
(x-1)2-2
(1+x)4

∴当x∈(0,1)时,有g′(x)<0,
∴g(x)是(0,1)上的减函数.
∴由g(x02)<g(x1x2),得x02>x1x2>x12,∴|x0|>x1.
1-x02
(1+x02)2
=
1-x1x2
(1+x12)(1+x22)
,及0<1-x02<1-x1x2,
(1+x02)2<(1+x12)(1+x22)(1+x22)2
故1+x02<1+x22,即|x0|<x2,
∴x1<|x0|<x2.

更多内容推荐