已知函数f(x)=lnx+1x-1.(Ⅰ)求函数的定义域,并证明f(x)=lnx+1x-1在定义域上是奇函数;(Ⅱ)对于x∈[2,6]f(x)=lnx+1x-1>lnm(x-1)(7-x)恒成立,求实

题目简介

已知函数f(x)=lnx+1x-1.(Ⅰ)求函数的定义域,并证明f(x)=lnx+1x-1在定义域上是奇函数;(Ⅱ)对于x∈[2,6]f(x)=lnx+1x-1>lnm(x-1)(7-x)恒成立,求实

题目详情

已知函数f(x)=ln
x+1
x-1

(Ⅰ)求函数的定义域,并证明f(x)=ln
x+1
x-1
在定义域上是奇函数;
(Ⅱ)对于x∈[2,6]f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求实数m的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由class="stub"x+1
x-1
>0
,解得x<-1或x>1,
∴函数的定义域为(-∞,-1)∪(1,+∞)
当x∈(-∞,-1)∪(1,+∞)时,
f(-x)=lnclass="stub"-x+1
-x-1
=lnclass="stub"x-1
x+1
=ln(class="stub"x+1
x-1
)-1=-lnclass="stub"x+1
x-1
=-f(x)

f(x)=lnclass="stub"x+1
x-1
在定义域上是奇函数.
(Ⅱ)由x∈[2,6]时,f(x)=lnclass="stub"x+1
x-1
>lnclass="stub"m
(x-1)(7-x)
恒成立,
class="stub"x+1
x-1
>class="stub"m
(x-1)(7-x)
>0,∵x∈[2,6]

∴0<m<(x+1)(7-x)在x∈[2,6]成立
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函数的性质可知x∈[2,3]时函数单调递增,x∈[3,6]时函数单调递减,
x∈[2,6]时,g(x)min=g(6)=7..
∴0<m<7.

更多内容推荐