已知函数f(x)=x2+3x-a(x≠a,a为非零常数).(1)解不等式f(x)<x;(2)设x>a时,f(x)的最小值为6,求a的值.-数学

题目简介

已知函数f(x)=x2+3x-a(x≠a,a为非零常数).(1)解不等式f(x)<x;(2)设x>a时,f(x)的最小值为6,求a的值.-数学

题目详情

已知函数f(x)=
x2+3
x-a
(x≠a,a为非零常数).
(1)解不等式f(x)<x;
(2)设x>a时,f(x)的最小值为6,求a的值.
题型:解答题难度:中档来源:不详

答案

(1)由f(x)<x,得
x2+3
x-a
<x,即
class="stub"ax+3
x-a
<0,等价于(ax+3)(x-a)<0,
当a>0时,化为(x+class="stub"3
a
)(x-a)<0.
∵-class="stub"3
a
<a,∴解集为{x|-class="stub"3
a
<x<a}.
当a<0时,不等式化为(x+class="stub"3
a
)(x-a)>0,
∵-class="stub"3
a
>a,∴解集为{x|x<a或x>-class="stub"3
a
}.
(2)∵x>a,∴x-a>0.
f(x)=
x2+3
x-a
=
x2-a2+a2+3
x-a

=(x+a)+
a2+3
x-a
=(x-a)+
a2+3
x-a
+2a
≥2
x-a
+2a=2
a2+3
+2a.
当且仅当x=a+
a2+3
时,取“=”,
故f(x)min=2
a2+3
+2a,
由已知2
a2+3
+2a=6,解得a=1.

更多内容推荐