如图所示,在△ABC中,点D在BC上,且DC=2BD,点E在AD上,且AE=ED=BD,CE=AB.(1)求证:∠ADB=90°;(2)判断直线AB与CE的位置关系,并证明你的结论.-七年级数学

题目简介

如图所示,在△ABC中,点D在BC上,且DC=2BD,点E在AD上,且AE=ED=BD,CE=AB.(1)求证:∠ADB=90°;(2)判断直线AB与CE的位置关系,并证明你的结论.-七年级数学

题目详情

如图所示,在△ABC中,点D在BC上,且DC=2BD,点E在AD上,且AE=ED=BD,CE=AB.
(1)求证:∠ADB=90°;
(2)判断直线AB与CE的位置关系,并证明你的结论.
题型:解答题难度:中档来源:同步题

答案

(1)证明:在△ADB和△CDE中,
AB=CE,BD=ED,AD=CD,
∴△ADB≌△CDE.
∴∠ADB=∠CDE.
又∠ADB+∠CDE=180°,
∴∠ADB=90°;
(2)解:AB⊥CE.
证明:∵△ADB≌△CDE,
∴∠BCE=∠BAD.
∵∠B+∠BAD=90°,
∴∠B+∠BCE=90°.
∴AB⊥CE.

更多内容推荐