)如图所示,在三棱锥P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=.(1)证明:△PBC为直角三角形;(2)求直线AP与平面PBC所成角的正弦值.-高

题目简介

)如图所示,在三棱锥P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=.(1)证明:△PBC为直角三角形;(2)求直线AP与平面PBC所成角的正弦值.-高

题目详情

)如图所示,在三棱锥PABC中,ABBC,平面PAC⊥平面ABCPDAC于点DAD=1,CD=3,PD.
 
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.
题型:解答题难度:中档来源:不详

答案

(1)见解析(2)
(1)证明:取AC中点E,联结BE,以点E为坐标原点,以EBEC所在的直线分别为x轴,y轴建立如图所示的空间直角坐标系Exyz,则B(,0,0),C(0,2,0),P(0,-1,).
于是=(-,-1,),=(-,2,0).
因为·=(-,-1,)·(-,2,0)=0,所以
所以BPBC,所以△PBC为直角三角形.

(2)由(1)可得,A(0,-2,0).
于是=(0,1,),=(,1,-),=(0,3,-).
设平面PBC的法向量为n=(xyz),

y=1,则zx.
所以平面PBC的一个法向量为n=(,1,).
设直线AP与平面PBC所成的角为θ
则sin θ=|cos〈n〉|=
所以直线AP与平面PBC所成角的正弦值为.

更多内容推荐