设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a2n和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明1S1+1S2+…+1Sn<2

题目简介

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是a2n和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明1S1+1S2+…+1Sn<2

题目详情

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
a2n
和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2
题型:解答题难度:中档来源:南充一模

答案

(Ⅰ)∵Sn是
a2n
和an的等差中项,
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an-12+an-1,
∴2Sn-2Sn-1=an2-an-12+an-an-1
2an=an2-an-12+an-an-1
an2-an-12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
Sn=
n(n+1)
2

class="stub"1
Sn
=class="stub"2
n(n+1)
=2(class="stub"1
n
-class="stub"1
n+1
),
class="stub"1
S1
+class="stub"1
S2
+class="stub"1
S3
+…+class="stub"1
Sn

=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]
=2(1-class="stub"1
n+1
)<2.
class="stub"1
S1
+class="stub"1
S2
+…+class="stub"1
Sn
<2

更多内容推荐