(8分)如图,在四棱锥中,底面是边长为的正方形,侧面,且,若、分别为、的中点.(1)求证:∥平面;(2)求证:平面平面.-高二数学

题目简介

(8分)如图,在四棱锥中,底面是边长为的正方形,侧面,且,若、分别为、的中点.(1)求证:∥平面;(2)求证:平面平面.-高二数学

题目详情

(8分) 如图,在四棱锥中,底面是边长为的正方形,侧面,且,若分别为的中点.
(1)求证:∥平面
(2)求证:平面平面.
题型:解答题难度:偏易来源:不详

答案

证明:(1)连结AC,则的中点,在△中,EF∥PA,     
且PA平面PAD,EF平面PAD,
∴EF∥平面PAD                             
证明:(2)因为平面PAD⊥平面ABCD, 平面PAD∩平面ABCD=AD,
又CD⊥AD,所以,CD⊥平面PAD,∴CD⊥PA      
又PA=PD=AD,所以△PAD是等腰直角三角形,
,即PA⊥PD     
又CD∩PD=D, ∴ PA⊥平面PDC,
又PA平面PAD,
所以 平面PAD⊥平面PDC     

更多内容推荐