已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:①f(x2)-f(x1)>x2-x1;②x2f(x1)>x1f(x2);③f(x1

题目简介

已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:①f(x2)-f(x1)>x2-x1;②x2f(x1)>x1f(x2);③f(x1

题目详情

已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正确结论的序号是______(把所有正确结论的序号都填上).360优课网
题型:填空题难度:中档来源:深圳一模

答案

由f(x2)-f(x1)>x2-x1,
可得
f(x2)-f(x1)
x2-x1
>1,
即两点(x1,f(x1))与(x2,f(x2))连线的斜率大于1,
显然①不正确;
由x2f(x1)>x1f(x2)
f(x1)
x1
f(x2)
x2

即表示两点(x1,f(x1))、(x2,f(x2))与原点连线的斜率的大小,
可以看出结论②正确;
结合函数图象,
容易判断③的结论是正确的.
故答案:②③

更多内容推荐