(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°。求证:BE=CF;(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA

题目简介

(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°。求证:BE=CF;(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA

题目详情

(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°。求证:BE=CF;
(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4。求GH的长;
(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4,直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示)。
题型:解答题难度:偏难来源:期末题

答案

解:(1)证明:如图1,
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠EAB+∠AEB=90°,
∵∠EOB=∠AOF=90°,
∴∠FBC+∠AEB=90°,
∴∠EAB=∠FBC,
∴△ABE≌△BCF,
∴BE=CF;
(2)如图2,过点A作AM//GH交BC于M,
过点B作BN//EF交CD于N,AM与BN交于点O′,
则四边形AMHG和四边形BNFE均为平行四边形,
∴EF=BN,GH=AM,
∵∠FOH=90°,AM//GH,EF//BN,
∴∠NO′A=90°,
故由(1)得,△ABM≌△BCN,
∴AM=BN,
∴GH=EF=4;
(3)①8;②4n。

更多内容推荐