如图,在直三棱柱中,,。M、N分别是AC和BB1的中点。(1)求二面角的大小。(2)证明:在AB上存在一个点Q,使得平面⊥平面,并求出的长度。-高三数学

题目简介

如图,在直三棱柱中,,。M、N分别是AC和BB1的中点。(1)求二面角的大小。(2)证明:在AB上存在一个点Q,使得平面⊥平面,并求出的长度。-高三数学

题目详情

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。
题型:解答题难度:中档来源:不详

答案

(1);(2)详见解析

试题分析:(1)有两种思路,其一是利用几何体中的垂直关系,以B为坐标原点,所在的直线分别为,轴,轴,轴建立空间直角坐标系,利用平面与平面的法向量的夹角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出该角的方法,利用平面平面,在平面内过点,垂足是,过作,垂足为,连结,得二面角的平面角,最后在直角三角形中求
(2)在空间直角坐标系中,设,求出平面的法向量,和平面的法向量
再由确定点的坐标,进而求线段的长度.
方法一(向量法):如图建立空间直角坐标系                    1分

(1)

设平面的法向量为,平面的法向量为
则有    3分
    5分
设二面角,则 
∴二面角的大小为60°。    6分
(2)设,   ∵
,设平面的法向量为
则有              10分
由(1)可知平面的法向量为
平面平面
此时,                  12分
方法二:(1)取中点,连接

平面,
平面 ,过,连接
平面 为二面角的平面角      3分


,  ∴

(2)同解法一.

更多内容推荐