当n为任意实数,k为某一特定整数时,等式n(n+1)(n+2)(n+3)+l=(n2+kn+1)2成立.则k=______.-数学

题目简介

当n为任意实数,k为某一特定整数时,等式n(n+1)(n+2)(n+3)+l=(n2+kn+1)2成立.则k=______.-数学

题目详情

当n为任意实数,k为某一特定整数时,等式n(n+1)(n+2)(n+3)+l=(n2+kn+1)2成立.则k=______.
题型:填空题难度:中档来源:不详

答案

n(n+1)(n+2)(n+3)+l,
=(n2+3n)(n2+3n+2)+l,
=(n2+3n)2+2(n2+3n)+l,
=(n2+3n+1)2,
∵(n2+kn+1)2=(n2+3n+1)2,
∴k=3,
故答案为:3.

更多内容推荐