如图,内接于,点在半径的延长线上,.(1)试判断直线与的位置关系,并说明理由;(2)若的半径长为1,求由弧、线段和所围成的阴影部分面积(结果保留和根号).-九年级数学

题目简介

如图,内接于,点在半径的延长线上,.(1)试判断直线与的位置关系,并说明理由;(2)若的半径长为1,求由弧、线段和所围成的阴影部分面积(结果保留和根号).-九年级数学

题目详情

如图,内接于,点在半径的延长线上,
(1)试判断直线的位置关系,并说明理由;
(2)若的半径长为1,求由弧、线段所围成的阴影部分面积(结果保留和根号).
题型:解答题难度:偏易来源:不详

答案

解:(1)直线相切.
理由如下:
中,
是正三角形,


是半径,直线相切.
(2)由(1)得



先根据圆周角定理得到∠COB的度数,再有OB=OC,即得△BOC是等边三角形,从而得到∠OCB的度数,就可得到∠OCD的度数,即可判断结果;
(2)阴影部分的面积可用COD的面积减去扇形OCB的面积即得。

更多内容推荐