点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cmB.2cmC.cmD.cm-九年级数学

题目简介

点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cmB.2cmC.cmD.cm-九年级数学

题目详情

点P在⊙O内,OP = 2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为(    )
A.1cmB.2cmC.cmD.cm
题型:单选题难度:偏易来源:不详

答案

D
析:过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.

解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:
故AB为最短弦长,
由垂径定理可得:AP=PB
已知OA=3,OP=2
在Rt△OPA中,由勾股定理可得:
AP2=OA2-OP2
∴AP==cm
∴AB=2AP=2cm
故此题选D.
点评:本题考查了最短弦长的判定以及垂径定理的运用.

更多内容推荐