设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;(2

题目简介

设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;(2

题目详情

设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
题型:解答题难度:中档来源:不详

答案

(1)a2n=a2qn-1=()n-4.
(2)见解析
解:(1)由题意得a2,a4,a6,a8,…成等比数列,且公比q=()
所以a2n=()n-4.
(2)由数列{an}是“J4型”数列,得
a1,a5,a9,a13,a17,a21,…成等比数列,设公比为t.
由数列{an}是“J3型”数列,得
a1,a4,a7,a10,a13,…成等比数列,设公比为α1;
a2,a5,a8,a11,a14,…成等比数列,设公比为α2;
a3,a6,a9,a12,a15,…成等比数列,设公比为α3.
=α14=t3,=α24=t3,=α34=t3.
所以α1=α2=α3,不妨记α=α1=α2=α3,且t=α.
于是a3k-2=a1αk-1=a1()(3k-2)-1,
a3k-1=a5αk-2=a1tαk-2=a1αk-=a1()(3k-1)-1,
a3k=a9αk-3=a1t2αk-3=a1αk-=a1()3k-1,
所以an=a1()n-1,故{an}为等比数列.

更多内容推荐