如图,△ABC中,∠A=62°,作CD∥AB,点E在AC上,点F在△ABC内,且∠FEC=62°,连接BF,请你探索∠1、∠2、∠F三个角之间的关系,并给出证明。-八年级数学

题目简介

如图,△ABC中,∠A=62°,作CD∥AB,点E在AC上,点F在△ABC内,且∠FEC=62°,连接BF,请你探索∠1、∠2、∠F三个角之间的关系,并给出证明。-八年级数学

题目详情

如图,△ABC中,∠A=62°,作CD∥AB,点E在AC上,点F在△ABC内,且∠FEC=62°,连接BF,请你探索∠1、∠2、∠F三个角之间的关系,并给出证明。
题型:解答题难度:中档来源:山东省期末题

答案

解:三个角之间关系为:∠1+∠F+∠2=180°.理由如下:
∵CD∥AB,
∴∠1=∠CBA=∠2+∠FBA,(两直线平行,内错角相等)
即∠FBA=∠1﹣∠2①,
又∵∠A=∠FEC=62°,
∴EF∥AB(同位角相等,两直线平行),
∴∠F+∠FBA=180°,(两直线平行,同旁内角互补)
即∠FBA=180°﹣∠F②,
由①、②得∠1﹣∠2=180°﹣∠F,
即∠1+∠F﹣∠2=180°。

更多内容推荐